5,123 research outputs found

    A general resonance theory based on Mourre's inequality

    Full text link
    We study the perturbation of bound states embedded in the continuous spectrum which are unstable by the Fermi Golden Rule. The approach to resonance theory based on spectral deformation is extended to a more general class of quantum systems characterized by Mourre's inequality and smoothness of the resolvent. Within the framework of perturbation theory it is still possible to give a definite meaning to the notion of complex resonance energies and of corresponding metastable states. The main result is a quasi-exponential decay estimate up to a controlled error of higher order in perturbation theory.Comment: 17 page

    Functional requirements for onboard management of space shuttle consumables, volume 1

    Get PDF
    A study was conducted to determine the functional requirements for onboard management of space shuttle consumables. A generalized consumable management concept was developed for application to advanced spacecraft. The subsystems and related consumables selected for inclusion in the consumables management system are: (1) propulsion, (2) power generation, and (3) environmental and life support

    Point-contact spectroscopy in heavy-fermion superconductors

    Get PDF
    We develop a minimal model to calculate point-contact spectra between a metallic tip and a superconducting heavy-fermion system. We apply our tunneling model to the heavy fermion CeCoIn5, both in the normal and superconducting state. In point-contact and scanning tunneling spectroscopy many heavy-fermion materials, like CeCoIn5, exhibit an asymmetric differential conductance, dI/dV, combined with a strongly suppressed Andreev reflection signal in the superconducting state. We argue that both features may be explained in terms of a multichannel tunneling model in the presence of localized states near the interface. We find that it is not sufficient to tunnel into two itinerant bands of light and heavy electrons to explain the Fano line shape of the differential conductance. Localized states in the bulk or near the interface are an essential component for quantum interference to occur when an electron tunnels from the metallic tip of the point contact into the heavy-fermion system.Comment: 13 pages, 9 figures. Accepted for publication in Physical Review

    Analytic models of ducted turbomachinery tone noise sources. Volume 2: Subprogram documentation

    Get PDF
    Analytical models were developed for computing the periodic sound pressures of subsonic fans in an infinite hardwall annular duct with uniform flow. The computer programs are described which are used for numerical computations of sound pressure mode amplitudes. The data are applied to the acoustic properties of turbomachinery

    Analytic models of ducted turbomachinery tone noise sources. Volume 1: Analysis

    Get PDF
    The analytic models developed for computing the periodic sound pressure of subsonic fans and compressors in an infinite, hardwall annular duct with uniform flow are described. The basic sound-generating mechanism is the scattering into sound waves of velocity disturbances appearing to the rotor or stator blades as a series of harmonic gusts. The models include component interactions and rotor alone

    Analytic models of ducted turbomachinery tone noise sources. Volume 3: Program test case results

    Get PDF
    Computer programs for analyzing the acoustic properties of turbomachinery with ducted flow were developed. The models include component interactions and rotor alone. Test case results determined from the computer programs are presented

    Emergence of intrinsic superconductivity below 1.178 K in the topologically non-trivial semimetal state of CaSn3

    Get PDF
    Topological materials which are also superconducting are of great current interest, since they may exhibit a non-trivial topologically-mediated superconducting phase. Although there have been many reports of pressure-tuned or chemical-doping-induced superconductivity in a variety of topological materials, there have been few examples of intrinsic, ambient pressure superconductivity in a topological system having a stoichiometric composition. Here, we report that the pure intermetallic CaSn3 not only exhibits topological fermion properties but also has a superconducting phase at 1.178 K under ambient pressure. The topological fermion properties, including the nearly zero quasi-particle mass and the non-trivial Berry phase accumulated in cyclotron motions, were revealed from the de Haas-van Alphen (dHvA) quantum oscillation studies of this material. Although CaSn3 was previously reported to be superconducting at 4.2K, our studies show that the superconductivity at 4.2K is extrinsic and caused by Sn on the degraded surface, whereas its intrinsic bulk superconducting transition occurs at 1.178 K. These findings make CaSn3 a promising candidate for exploring new exotic states arising from the interplay between non-trivial band topology and superconductivity, e.g. topological superconductivityComment: 20 pages,4 figure

    Transport and the Order Parameter of Superconducting UPt3

    Full text link
    We calculate the ultrasonic absorption and the thermal conductivity in the superconducting state of UPt3_{3} as functions of temperature and direction of propagation and polarization. Two leading candidates for the superconducting order parameter are considered: the E1gE_{1g} and E2uE_{2u} representations. Both can fit the data except for the ultrasonic absorption in the AA phase. To do that, it is necessary to suppose that the system has only a single domain, and that must be chosen as the most favorable one. However, the E2uE_{2u} theory requires fine-tuning of parameters to fit the low temperature thermal conductivity. Thus, transport data favor the E1gE_{1g} theory. Measurements of the thermal conductivity as a function of pressure at low temperature could help to further distinguish the two theories.Comment: 7 pages, 4 figure
    • …
    corecore